
USER PARAMETER FREE APPROACHES TO MULTISTATIC ADAPTIVE
ULTRASOUND IMAGING

Lin Du† Jian Li† Petre Stoica‡
†Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130, USA.

‡Dept. of Information Technology, Uppsala University, SE-75105 Uppsala, Sweden.

ABSTRACT
Delay-and-sum (DAS) beamforming is the standard tech-

nique for ultrasound imaging applications. Due to its data
independent property, DAS may suffer from poorer resolu-
tion and worse interference suppression capability than the
adaptive standard Capon beamformer (SCB). However, the
performance of SCB is sensitive to the errors in the sample
covariance matrix and the signal steering vector. Therefore,
robust adaptive beamforming techniques are desirable. In this
paper, we consider ultrasound imaging via applying a user
parameter free robust adaptive beamformer, which uses a
shrinkage-based general linear combination (GLC) algorithm
to obtain an enhanced estimate of the array covariance matrix.
We present several multistatic adaptive ultrasound imaging
(MAUI) approaches based on GLC to achieve high resolution
and good interference suppression capability. The performance
of the proposed MAUI approaches is demonstrated via an
experimental example.
Index Terms—Adaptive beamforming, Ultrasound imaging

I. INTRODUCTION
Delay-and-sum (DAS) beamforming is the standard tech-

nique for ultrasound imaging applications. Theoretically this
data independent approach has lower resolution and worse in-
terference suppression capability than an adaptive beamformer,
e.g., the standard Capon beamformer (SCB) [1]. However, in
practice, there is a clear performance degradation for SCB
when the covariance matrix is inaccurately estimated due to
limited data samples and when the knowledge of the steering
vector is imprecise due to look direction errors or imperfect
array calibration. Therefore, adaptive beamforming approaches
that are robust to the aforementioned problems are desired.
Most of the early approaches to robust adaptive beamform-

ing are ad-hoc techniques, e.g., the traditional diagonal loading
algorithm [2], for which there is no clear way to choose
the diagonal loading level. The diagonal loading algorithm
has been previously applied to ultrasound imaging [3], where
the diagonal loading level was set to be proportional to
the received power. The robust Capon beamformer (RCB)
presented in [4], on the other hand, can precisely calculate
the diagonal loading level based on the uncertainty set of the
steering vector. RCB was applied to ultrasound imaging in
[5] and the results showed that RCB can provide much better
imaging quality than DAS. However, we still need to specify
the uncertainty set parameter for RCB, which may be hard to
do in practice. To achieve user parameter free robust adaptive
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beamforming, we have recently devised several beamformers
in [6] based on the shrinkage method, which can compute the
diagonal loading level automatically without specifying any
user parameters. Among these beamformers, the general linear
combination (GLC) algorithm performs well, especially when
the number of snapshots is small.
In this paper, we present several user parameter free ap-

proaches based on GLC for multistatic adaptive ultrasound
imaging (MAUI), which form images of the backscattered
energy for each focal point within the region of interest. All
the MAUI approaches are two-stage imaging algorithms and
GLC is employed in each stage. A similar idea can be applied
to microwave imaging to replace the user parameter dependent
RCB in each stage [7]. The complete multistatic data set
for a given focal point can be represented by the data cube
shown in Fig. 1. In one of the MAUI methods, which we
refer to as MAUI-1, GLC is used in Stage I to obtain a set
of backscattered signal estimates at each time instant. Based
on these estimates, a scalar waveform is recovered via GLC
in Stage II, which is then used to compute the backscattered
energy. An alternative way of signal processing in Stage I is to
compute a set of backscattered waveforms for each transmitter,
which is referred to as MAUI-2. In addition, we also consider
a combined method MAUI-C, which uses the signal estimates
from both MAUI-1 and MAUI-2 in Stage I for the computation
of backscattered energy. An experimental example will be
presented to illustrate the performance of the MAUI methods.
Notation: The superscript (·)∗ denotes the conjugate trans-

pose, (·)T denotes the transpose, �x� denotes rounding to the
greatest integer less than x, E(·) is the expectation operator,
tr(·) is the trace operator, and ‖·‖ denotes the Frobenius norm
for a matrix or the Euclidean norm for a vector. Finally R ≥ 0
means that R is positive semi-definite.
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Fig. 1. The multistatic data cube. MAUI-1 processes the data set for a given
time instant t0, while MAUI-2 processes the data set for a given transmitter
index i.

II. PROBLEM FORMULATION
Consider an active array of M transducers using the multi-

static (also called MIMO (multi-input multi-output) [8]) data
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acquisition scheme. Each transducer takes turns to trans-
mit the same pulse while all of the transducers record the
backscattered signals. As a result, the received data set
{Pi,j(t), i, j = 1, · · ·M ; t = 0, · · · , T−1} comprises the
A-scan data for all possible transmitter and receiver pairs of the
array, where Pi,j(t) is the data sequence of the backscattered
echo at the jth transducer due to transmitting a pulse from the
ith transducer, and T is the number of data samples for the
A-scan sequence.
To extend GLC to the wide-band ultrasound imaging ap-

plication, we align the received signals from the data set
{Pi,j(t)} to each focal point by inserting appropriate time
delays. Let ri and rj denote the locations of the ith transmitter
and jth receiver, respectively, and let rf denote the location
of a focal point in the imaging region of interest. The time
delay due to the ultrasonic wave propagation from the ith

transmitter to the focal point rf and then back to the jth

receiver is approximated as

τi,j(rf ) =
1

Δt

⌊‖ri − rf‖
c

+
‖rj − rf‖

c

⌋
, (1)

where c is the sound propagation speed in the medium under
interrogation, and Δt denotes the sampling interval. Then, the
time shifted signal for a given focal point of interest rf can
be represented as

yi,j(rf , t) = Pi,j(t + τi,j(rf )),
i, j = 1, · · ·M ; t = 0, · · · , N − 1, (2)

where N is determined by the duration of the transmitted pulse
and the sampling interval Δt.
The problem of interest here is to form an ultrasound image

on a grid of points in the imaging region. The image is
formed from the received data set {Pi,j(t)}, or more precisely,
{yi,j(rf , t)}, for each focal point of interest.

III. MAUI

The two-stage MAUI algorithms use a GLC-based robust
adaptive beamforming algorithm in each stage. We first review
the GLC approach and then we show how to apply GLC to
the data set {yi,j(rf , t)} in Stages I and II of the proposed
MAUI approaches.

A. GLC

In the GLC approach, we replace the sample covariance ma-
trix in SCB by an enhanced estimate obtained via a shrinkage-
based method. The enhanced covariance matrix estimate R̃ is
obtained by linearly combining the sample covariance matrix
R̂ and a shrinkage target (we use the identity matrix I here
for lack of a better choice) in an optimal mean-squared error
(MSE) sense:

R̃ = αI + βR̂, (3)

where R̂ = 1
K

∑K
k=1 y(k)y∗(k), with the L × 1 vector y(k)

denoting the kth snapshot andK representing the total number
of snapshots. The shrinkage parameters α and β in (3) are
estimated by minimizing the MSE of R̃ with respect to α and

β, where

MSE(R̃) = E{‖R̃ − R‖2}
= ‖αI − (1 − β)R‖2 + β2E{‖R̂ − R‖2}
= α2L − 2α(1 − β) tr(R)
+(1 − β)2‖R‖2 + β2E{‖R̂ − R‖2},
R = E [y(k)y∗(k)] . (4)

The optimal values for β and α can be readily obtained:

β0 =
γ

ρ + γ
, (5)

α0 = ν(1 − β0) = ν
ρ

γ + ρ
, (6)

where ρ = E{‖R̂ − R‖2}, ν = tr(R)
L , and γ = ‖νI − R‖2.

Note that β0 ∈ [0, 1] and α0 ≥ 0.
To estimate α0 and β0 from the given data, we need an

estimate of ρ, which can be calculated as (see [9] for details):

ρ̂ =
1

K2

K∑
k=1

‖y(k)‖4 − 1
K

‖R̂‖2. (7)

Using (7) we can get estimates for β0 and α0 as

β̂0 =
γ̂

γ̂ + ρ̂
, (8)

and
α̂0 = ν̂(1 − β̂0), (9)

where ν̂ = tr(R̂)
L , and γ̂ = ‖ν̂I − R̂‖2. Note that α̂0 ≥ 0 and

β̂0 ≥ 0, which guarantees that the enhanced covariance matrix
estimate R̃ ≥ 0.
Substituting (8)-(9) in (3) yields the enhanced covariance

matrix estimate R̃. Using R̃ instead of R̂ in the SCB formu-
lation, we obtain the beamformer weight vector for GLC as
follows:

ŵ =
R̃−1ā

ā∗R̃−1ā
, (10)

where ā denotes the assumed steering vector [10]. Note that
GLC is a diagonal loading approach with the diagonal loading
level α̂0/β̂0 determined automatically from the observed data
snapshots {y(k)}K

k=1.

B. Stage I
To apply the GLC-based robust adaptive beamformer to the

data set {yi,j(rf , t)} in (2), we use two approximate signal
models for yi,j(rf , t) by making different assumptions. Since
we will concentrate on the focal point rf in what follows, the
dependence on rf will be dropped for notational simplicity.
The MAUI-1 algorithm uses the following signal model:

yi(t) = a(t)si(t) + ei(t), (11)

where yi(t) = [yi,1(t), · · · , yi,M (t)]T represents the aligned
array data vector of the ith transmitter, si(t) denotes the
signal of interest (SOI) that is proportional to the ultrasound
reflectivity or scattering strength, which is assumed to depend
on the transmitter i but not on the receiver j, ei(t) denotes the
residual term due to noise and interferences, and a(t) denotes
the array steering vector that is assumed to be approximately
equal to 1M×1. Here, we assume that a(t) may vary with t,
but is constant with respect to the transmitter index i.
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In Stage I, for a given time t0, we form a pseudo-covariance
matrix by considering the number of transmitters as the
number of snapshots:

R̂(t0) =
1
M

Y(t0)Y∗(t0),

Y(t0) = [y1(t0) · · ·yM (t0)] . (12)

By using R̂(t0) as the sample covariance matrix we obtain
an enhanced covariance matrix estimate R̃(t0) as described in
Section III.A, and then calculate the weight vector ŵ(t0) for
Stage I of MAUI-1 using (10) with ā = 1M×1 as:

ŵ(t0) =
R̃(t0)−1ā

ā∗R̃(t0)−1ā
. (13)

Once we got the weight vector, we can estimate si(t0) in (11)
as:

ŝi(t0) = ŵ∗(t0)yi(t0). (14)

Define a vector ŝ(t0) = [ŝ1(t0), · · · , ŝM (t0)]
T of the esti-

mated signals for all transmitters. Repeating the above process
from t0 = 0 to t0 = N − 1, we build the matrix Ŝ1 =
[ŝ(0), · · · , ŝ(N − 1)].
The MAUI-2 algorithm considers another signal model:

yi(t) = aisi(t) + ei(t), (15)

where ai denotes the array steering vector, which is also as-
sumed to be approximately equal to 1M×1. However, different
from MAUI-1, here ai is assumed to change with i, but be
constant with respect to t.
For a given transmitter i, the covariance matrix in Stage I

of MAUI-2 is formulated as:

R̂i =
1
N

YiY∗
i ,

Yi = [yi(0) · · ·yi(N − 1)] . (16)

Using R̂i as the sample covariance matrix we get an
enhanced estimate R̃i, and then compute a weight vector
ŵi using (10). The time sample vector of the corresponding
beamformer output can be written as

ŝi = [ŵ∗
i Yi]

T
. (17)

Repeating the above process for i = 1, · · · ,M yields a set of
waveforms Ŝ2 = [ŝ1, · · · , ŝM ]T .
As we mentioned before, the errors in the sample covariance

matrix and the steering vector cause performance degradations
for any adaptive beamforming algorithms. GLC is designed to
improve the covariance matrix estimate. MAUI-1 and MAUI-2
use different sample covariance matrices. Hence the improve-
ments obtained by using GLC may be different. This fact
motivates us to combine MAUI-1 and MAUI-2 to achieve a
better performance. We refer to this combined method, where
Ŝ1 of MAUI-1 and Ŝ2 of MAUI-2 are used simultaneously,
as MAUI-C. We denote the combined signal matrix as ŜC =[
ŜT

1 ŜT
2

]T

.
Let the M × 1 vectors {ŝm(t)}t=0,··· ,N−1 denote the

columns of Ŝm for m = 1, 2, and let the 2M × 1 vectors
{ŝC(t)}t=0,··· ,N−1 denote the columns of ŜC . Note that both
MAUI-1 and MAUI-2 obtain M signal waveform estimates
at the end of Stage I, while MAUI-C obtains 2M signal
waveform estimates. We will apply GLC to these estimates
in Stage II to recover a scalar waveform and compute the
signal energy at the focal point.

C. Stage II
In Stage II, the signal model for both MAUI-1 and MAUI-2

can be represented as:

ŝm(t) = ams(t) + em(t), t = 0, · · · , N − 1, m = 1, 2,
(18)

where the steering vector am is assumed to be 1M×1, and
em(t) represents the residual term. Similar to Stage I, the
knowledge of am may be imprecise and the sample size
N may be small. Hence the GLC-based robust adaptive
beamformer is used again to estimate s(t). Taking R̂m as the
sample covariance matrix:

R̂m =
1
N

N−1∑
t=0

ŝm(t)ŝ∗m(t), m = 1, 2, (19)

and paralleling the development in Stage I, we obtain the
weight vector ŵm using (10). Then, the output signal estimate
is computed as:

ŝ(t) = ŵ∗
mŝm(t), m = 1, 2. (20)

Finally, the signal energy for a particular focal point rf is
computed as:

E(rf ) =
N−1∑
t=0

ŝ2(t). (21)

For Stage II of MAUI-C, the signal model can be written
as:

ŝC(t) = aCs(t) + eC(t), t = 0, · · · , N − 1, (22)

where the vector ŝC(t) is considered now to be a snapshot
from a 2M -element “array”, and the steering vector aC is
assumed to be 12M×1. eC(t) denotes the residual term. We
obtain the weight vector ŵC for MAUI-C via (10) by using
the following sample covariance matrix:

R̂C =
1
N

N−1∑
t=0

ŝC(t)ŝ∗C(t). (23)

The beamformer ŵC yields an estimate of the signal:

ŝ(t) = ŵ∗
C ŝC(t). (24)

Then, the backscattered energy at the focal point rf is com-
puted via (21).

IV. EXPERIMENTAL EXAMPLE
In this section, we present some experimental results to

demonstrate the performance of the three MAUI algorithms.
The complete multistatic data set was obtained by Bioacoustics
Research Laboratory of the University of Illinois at Urbana-
Champaign. The scene of interest contains several wire targets
arranged in a complicated pattern. The data was collected us-
ing a 64-element linear array. The transducer center frequency
was 2.6 MHz, the sampling rate was 25 MHz, and the sound
velocity was assumed to be 1450 m/s. For comparison, the
multistatic DAS scheme is also applied to the same data set.
The DAS scheme estimates the signal waveform s(t) as

ŝ(t) = ŵ∗
DASY(t)ŵDAS, t = 0, · · · , N − 1, (25)

where ŵDAS = ā/M is the weight vector for DAS. The
backscattered energy at rf is then estimated via (21).
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Fig. 2 shows the ultrasound images for the wire data set
under consideration. The images are displayed on a logarith-
mic scale with a 30 dB dynamic range. In Figs. 2 (a)-(d), we
compare the images obtained via DAS and MAUI algorithms
using only the central 32 elements of the array (M = 32).
Since DAS simply sums all signals, the DAS image shown
in Fig. 2 (a) has higher sidelobe level and poorer resolution
than the MAUI images shown in Figs. 2 (b)-(d). Comparing
Fig. 2 (b) and Fig. 2 (c), which correspond to MAUI-1 and
MAUI-2 respectively, we note that MAUI-2 image has a
lower background clutter level. However, MAUI-2 has poorer
resolution: some wire targets are not discernable in the MAUI-
2 image. On the other hand, the image obtained via MAUI-C
has low sidelobe level similarly to MAUI-2 and high resolution
similarly to MAUI-1. Moreover, all targets are clearly shown in
the MAUI-C image. For comparison, we also include the DAS
image obtained using the entire array (M = 64). Note that
MAUI algorithms, especially MAUI-C, with 32 transducers
can achieve similar imaging quality to DAS with a double
sized array.

V. CONCLUSIONS
We have presented three user parameter free approaches to

multistatic adaptive ultrasound imaging (MAUI). These two-
stage MAUI approaches employ a GLC-based robust adaptive
beamformer in each stage to achieve high resolution and good
interference suppression capability, and also they are robust to
small sample size problems and array steering vector errors.
More importantly, GLC is a user parameter free approach
as opposed to other existing robust adaptive beamforming
algorithms, which makes it easy to use it in practice. The
experimental results have demonstrated the effectiveness of the
MAUI algorithms for ultrasound imaging. We have shown that
the MAUI-C method, which combines MAUI-1 and MAUI-2,
provides the best imaging quality.
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Fig. 2. Ultrasound images obtained via (a) DAS with M = 32, (b) MAUI-1
with M = 32, (c) MAUI-2 with M = 32, (d) MAUI-C with M = 32, and
(e) DAS with M = 64.
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